

SWARNANDHRA

COLLEGE OF ENGINEERING & TECHNOLOGY

(AUTONOMOUS)

Accredited by National Board of Accreditation, AICTE, New Delhi, Accredited by

NAAC with "A" Grade – 3 32 CGPA, Recognized under 2(f) & 12(B) of UGC Act 1956,

Approved by AICTE, New Delhi, Permanent Affiliation to JNTUK, Kakinada

Approved by AICTE, New Delhi, Permanent Affiliation to JNTUK, Kakinada

Seetharampuram, W G.DT., Narsapur-534280, (Andhra Pradesh)

DEPARTMENT OF CIVIL ENGINEERING

TEACHING PLAN

Course · Code	Course Se Title	mest er Br	anch	Contact Periods /W	eek	Academic Year	Date of commenc ement of Semester	
20CE3T01	STRENGTH OF MATERIALS	III CI	VIL	06		2021-22	25-10-2021	
COURSE	OUTCOMES					1.1	1.	
1	conditions and the	he support c	ondition	vior under the influence or s. (K2)				
2	developed in the	beams and	deflection	tion of section modulus arons due to various loading	condition	s. (K3)	of stresses	
3	Assess stresses a	cross sectio	n of the	thin and thick cylinders.	(K2)			
4	subjected to diff	erent loadin	g condit	eering applications like shions. (K3)				
5	Find Principal stresses developed in a member when it is subjected to stresses along different axes and design the sections. (K3)							
UNIT	Out Comes / Bloom's Leve	Topics No.		Topics/Activity	Text Book / Refere nce	Contact Hour	Delivery Method	
	Understand the basic materials behavior under	1.1	Introd	e Stresses, Strains uction, Elasticity and city – Types of stresses rains	T1,R1	1	Chalk &	
	the influence of different external 1.3		e's law – stress – strain m for mild steel	T1,R1	1	Talk, PPT,		
		al 1.3	safety	ng stress – Factor of	T1,R1	1	Tutorial	
	loading	1.4	Latera	l strain, Poisson's ratio	T1,R1	1		
	conditions and the support	1.5	modul	etric strain – Elastic i and the relationship en them and problems	T1,R2	1		

SWARNANDHRA

COLLEGE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

Accredited by National Board of Accreditation, AICTE, New Delhi, Accredited by NAAC with "A" Grade – 3.32 CGPA Recognized under 2(f) & 12(B) of UGC Act 1956, Approved by AICTE, New Delhi, Permanent Affiliation to JNTUK, Kakinada Seetharampuram, W.G.DT., Narsapur-534280, (Andhra Pradesh)

	conditions. (K2)	1.6	Strain Energy – Resilience	T1,R2	1	
		1.7	 Gradual, sudden impact loadings – simple applications and problems 	T1,R1	1	
		1.8	Shear Force and Bending Moment: Definition of beam	T1,R1	1	
		1.9	Types of beams – Concept of shear force and bending moment	T2,R1	1	
		1.10	S.F and B.M diagrams for cantilever, simply supported problems	T2,R1	1	
		1.11	overhanging beams	T2,R1	1	
		1.12	S.F and B.M diagrams point loads and uniformly distributed loads.	T2,R1	1	
4		in the		Total		12
	Know bending	2.1	Flexural Stresses: Theory of simple bending	T2,R1	1	
	concepts and	2.2	Assumptions	T2,R1	1	
	calculation of section modulus	2.3	Derivation of bending equation: $M/I = f/y = E/R$, Neutral axis	T2,R2	1	Chalk &
		2.4	Determination bending stresses	T2,R1	1	Talk,
П	and for determination of	2.5	modulus of rectangular and circular sections (Solid and Hollow),	T2,R2	1	PPT, Tutorial
	stresses developed in the	2.6	I, T, Angle and Channel sections	T2,R1	1	
	beams and	2.7	Problems on different sections	T1,R1	1	
	deflections due to	2.8	Design of simple beam sections.	T1,R1	1	
	various loading					
	various loading conditions. (K3)	2.9	Shear Stresses, Derivation of formula Shear stress distribution across	T1,R1	1	

SWARNANDHRA

COLLEGE OF ENGINEERING & TECHNOLOGY

(AUTONOMOUS)

Accredited by National Board of Accreditation, AICTE, New Delhi, Accredited by
NAAC with "A" Grade – 3.32 CGPA Recognized under 2(f) & 12(B) of UGC Act 1956,
Approved by AICTE, New Delhi, Permanent Affiliation to JNTUK, Kakinada
Approved by AICTE, New Delhi, Permanent Affiliation to JNTUK, Kakinada
Seetharampuram, W.G.DT., Narsapur-534280, (Andhra Pradesh)

			rectangular, circular,			-13 54
E 28/3		2.11	, triangular, I, T angle sections, built up beams, shear center.	T1,R1	1	
1		2.12	Problems on different sections	T1,R1	1	12
	3/10/19/19/19			Total		12
		3.1	Deflection Of Beams, Bending into a circular arc	T2,R1	1	Chalk & Talk,
		3.2	slope, deflection and radius of curvature, Differential equation for the elastic line of a beam	T2,R1	1	
		3.3	Double integration and Macaulay's methods	T1,R2	1	
	Assess stresses across section of the thin and thick cylinders. (K2)	3.4	Determination of slope and deflection for cantilever point loads	T2,R2	1	
Ш		3.5	Determination of slope and deflection for simply supported of point loads	T1,R2	1	PPT, Tutoria
		3.6	Determination of slope and deflection for cantilever udl	T2,R1	1	
		3.7	Determination of slope and deflection for simply	T1,R2	1	
		3.8	Thin seamless cylindrical shells – Derivation of formula for longitudinal and circumferential stresses – hoop, longitudinal and volumetric strains	T1,R1	1	
		3.9	Changes in diameter, and volume of thin cylinders. problems	T1,R1	1	
		3.10	Thick Cylinders: Introduction Lame's theory for thick cylinders	T1,R1	1	
		3.11	Derivation of Lame's formulae – distribution of hoop and radial stresses across thickness – design of thick cylinders	T1,R1	1	
		3.12	Compound cylinders. Problems on thin and thick		1	

SWARNANDHRA
COLLEGE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)

Accredited by National Board of Accreditation, AICTE, New Delhi, Accredited by
NAAC with "A" Grade – 3.32 CGPA, Recognized under 2(f) & 12(B) of UGC Act 1956,
Approved by AICTE, New Delhi, Permanent Affiliation to JNTUK, Kakinada
Seetharampuram, W.G.DT., Narsapur-534280, (Andhra Pradesh)

175			T. CC		Total	1
		4.1	Torsion of Circular Shafts and springs, Theory of pure torsion – Derivation of Torsion equation	d on T2,R	21	1
		4.2	Assumptions— Torsional moment of resistance — Polar section modulus	T2,R1	1 1	
	Coloria	4.3	Power transmitted by shafts -	T1,R2	1	
	Calculate stresses in	4.4	Springs, Introduction – Types of springs	T2,R1	1	Challa
	different engineering	4.5	deflection of close and open coiled helical springs under axial pull and axial couple	T1,R2	1	Chalk Talk, PPT,
IV	applications like shafts, springs,	4.6	and problems	T2,R1	1	Tutoria
	columns and	4.7	Columns And Struts, Types of columns –Euler's theorem for long columns– assumptions	T1,R1	1	
	struts subjected to different loading	4.8	load formulae for various end conditions – Equivalent length of a column	T1,R1	1	
	conditions. (K3)	4.9	Slenderness ratio — Euler's critical stress — Limitations of Euler's theory.	T1,R1	1	
		4.10	Problems	T1,R1		
		4.11	Laterally loaded struts – subjected to uniformly distributed and concentrated loads – Maximum B.M. and stress due to transverse and lateral loading.	T1,R1	1	
		4.12	Problems on different loadings	T1,R1		
	Find Principal			11,11	1	
V	stresses	3.1	Principal Stresses and Strains, Introduction – Stresses on an inclined section of a bar under	Γ2,R1	Total 1	Chalk &

SWARNANDHRA
COLLEGE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS)
Accredited by National Board of Accreditation, AICTE, New Delhi, Accredited by NAAC with "A" Grade – 3.32 CGPA Recognized under 2(f) & 12(B) of UGC Act 1956, Approved by AICTE, New Delhi, Permanent Affiliation to JNTUK, Kakinada Seetharampuram, W.G.DT., Narsapur-534280, (Andhra Pradesh)

	developed in a		axial loading			PPT,	
	(2) JAPAN	5.2	compound stresses	T2,R1	1	Tutoria	
	member when it is subjected to	5.3	Normal and tangential stresses on an inclined plane for biaxial stresses	T2,R1	1		
	stresses along	5.4	Problems	T1,R2	1		
	different axes and design the	5.5	Two perpendicular normal stresses accompanied by a state of simple shear	T1,R1	1		
	sections. (K3)	5.6	Mohr's circle of stresses – Principal stresses and strains – Analytical and graphical solutions.	T2,R1	1		
		5.7	Theories Of Failures, Introduction	T2,R1	1		
		5.8	Types of Theories Of Failures,	T1,R2	1		
		5.9	Maximum Principal stress theory	T1,R2	1		
		5.10	Maximum Principal strain theory – Maximum shear stress theory	T1,R2	1		
		5.11	Maximum strain energy theory – Maximum shear strain energy theory.	T1,R2	1		
		5.12	Problems on different therioes	T1,R2	1		
				Total		12	
TENTO B		(CUMULATIVE PROPOSED PE	RIODS		60	
Text Boo	ks:		POTENCY PURILICHED VEAD OF	DUDITO	ATION		
S.No.	AUTHORS, BOOK TITLE, EDITION, PUBLISHER, YEAR OF PUBLICATION						
1	R.K Bansal, Strength of Materials, 6 th Edition, Lakshmi Publications, 2018. B.C Punmia, Jain and Jain, 2 nd Edition, Mechanics of Materials, 2017.						
2	B.C Punmia, Jain an	ength of	Materials, 3 rd Editio, Oxford Public	cations, 20	16.		
Reference		eligui oi	muchain, Dame, onio, a Fuori	, _0			
S.No.	AUTHORS ROOK	TITLE. I	EDITION, PUBLISHER, YEAR OF	PUBLICA	ATION		
1	R. K. Rajput, Streng	th of Ma	terials, 7 th Edition, S. Chand & Co.	, New Dell	ni, 2018		
2	R. Subramanian, Str	ength of	Materials, 3rd Edition, Oxford Publ	lications, 2	016.		
Web Deta	ils						
		1	tch?v=IpMZNpWjsk4				

SWARNANDHRA

COLLEGE OF ENGINEERING & TECHNOLOGY

(AUTONOMOUS)

Accredited by National Board of Accreditation, AICTE, New Delhi, Accredited by

NAAC with "A" Grade = 3.32 CGPA, Recognized under 2(f) & 12(B) of UGC Act 1956,

Approved by AICTE, New Delhi, Permanent Affiliation to JNTUK, Kakinada

Seetharampuram, W.G.DT., Narsapur-534280, (Andhra Pradesh)

		Name	Signature with Date
i.	Faculty	G.VENKATA RAMANA	Stabila
iì.	Course Coordinator	G.VENKATA RAMANA	375/11/21
iii.	Module Coordinator	A.VENKATA KRISHNA	1X4 shil21
iv.	Programme Coordinator	G V L N MURTHY	I Lud

Principal